Declaration of Conformity We, Manufacturer

ZIPPY TECHNOLOGY CORP. 10F,No.50,MIN CHYUAN RD. SHIN-TIEN, TAIPEI HSIEN TAIWAN, R.O.C.

declare that the product (description of the apparatus, system, installation to which it refers)

SWITCHING POWER SUPPLY MRM-6550P

is in conformity with

(reference to the specification under which conformity is declared) in accordance with 89/336 EEC-EMC Directive

EN 55022:1998+A1/2000+A2/2003 EN 61000-3-2:2000 Harmonic current Information technology equipment requirements

-Radio disturbance characteristics

-Limits and methods of measurement

EN 55024 : 1998+A1/2001+A2/2003 EN 61000-3-3 /1995+ Voltage fluctuations Information technology equipment A1/2001and flicker -Immunity characteristics

requirements

Test-Lab

-Limits and methods of measurement

EN 61000-4-2 Electrostatic discharge **Conducted Immunity** EN 61000-4-6

requirements "ESD"

EN 61000-4-3 Radiated, radio frequency EN 61000-4-11 Voltage Dip,interruptions electromagnetic field Immunity requirements

EN 61000-4-4 Electrical fast transient CE marking requirements "EFT"

EN 61000-4-5 Surge Immunity requirements

Low Voltage Directive (73/23/ECC,93/68/EEC):

EN 60950-1: 2001-+A11 TUV certificate No: R50059168

Manufacturer

JUN,07, 2005 JUN,07,2005 Date: Date:

Karen Signature: Signature:

ZIPPY Name: Name:

APPLICATION FOR CERTIFICATION ON Behalf Of ZIPPY TECHNOLOGY CORP. SWITCHING POWER SUPPLY

Model#: MRM-6550P

FCCID:N/A

PREPARED FOR: ZIPPY TECHNOLOGY CORP. 10F,No.50,MIN CHYUAN RD. SHIN-TIEN, TAIPEI HSIEN TAIWAN, R.O.C

Report By: ZIPPY TECHNOLOGY CORP.

10F,No.50,MIN CHYUAN RD.

SHIN-TIEN, TAIPEI HSIEN

TAIWAN, R.O.C

TEL:(02)2918-8512

FAX:(02)2913-4969

TABLE OF CONTENTS

Description	Page
1. Test Report Certification	5
2. General Information	6
2.1 Production Description	7
2.2 Tested System Details	7
2.3 Test Methodology	7
2.4 Test Facility	7
3.Electronic-Magnetic Interference Test	8
3.1. Conducted Power Line Test	8
3.1.1 Test Equipments	8
3.1.2 Block Diagram of Test Setup	8
3.1.3 Conducted Powerline Emission Limit	9
3.1.4 EUT Configuration on Measurement	9
3.1.5 EUT Exercise Software	9
3.1.6 Conducted Emission Data	10
3.2. Radiation Emission Test	11
3.2.1 Test Equipment	11
3.2.2 Test Setup	12
3.2.3 Radiated Emission Limited	12
3.2.4 EUT Configuration	13
3.2.5 Operating Condition of EUT	13
3.2.6 Radiated Emission Data	14
4. ESD Measurement	16
4.1 Test Equipments	16
4.2 Block Diagram of Test Setup	16
4.3 Severity Levels	17
4.4 EUT Operating Condition	17
4.5 Test Procedure	17
4.6 Test Method	17
4.7 Test Result	18

	Page
5. Radiated Susceptibility Measurement	19
5.1 Test Equipment	19
5.2 Block Diagram of Test Setup	19
5.3 Severity Levels	20
5.4 EUT Operating Condition	20
5.5 Test procedure	20
5.6 Test Method	20
5.7 Test Result	21
6.Electrical Fast Transient/Burst Measurement	22
6.1 Test Equipment	22
6.2 Block Diagram of Test Setup	22
6.3 Severity Levels	22
6.4 EUT Operating Condition	23
6.5 Test procedure	23
6.6 Test Method	23
6.7 Test Result	23
7. Harmonic Current Requirements	24
8. Voltage Fluctuation and Filcker Test	27
9. Surge Immunity Test	28
10.Conducted Immunity Test	29
11. Voltage Dip,interruptions Immunity Test	30
12. hotographs	31
13. EMI Reduction method during compliance Testing	34
Appendix A Circuit diagram, block diagram, User Manual Appendix B Doc	

1. Test Report Certification

Applicant : ZIPPY TECHNOLOGY CORP.

Manufacturer: ZIPPY TECHNOLOGY CORP.

EUT Description : Switching power supply

(A) FCC ID : N/A

: MRM-6550P (B) Model No.

(C) Serial No. : N/A

(D) Power Supply : 115Vac/60Hz,230Vac/50Hz

MEASUREMENT PROCEDURE USED:

EN 55024 RULES EN 55022 RULES

THE DEVICE DESCRIBED ABOVE WAS TESTED BY ZIPPY SHIN JIUH CORP. TO DETERMINE THE SEVERITY LEVELS THE DEVICE CAN ENDURE AND ITS PERFORMANCE CRITERION.

THE MEASUREMENT RESULTS ARE CONTAINED IN THIS TEST REPORT AND ZIPPY SHIN JIUH CORP. IS ASSUMED FULL RESPONSIBILITY FOR THE ACCURACY AND COMPLETENESS OF THESE MEASUREMENT. ALSO, THIS REPORT SHOWS THAT THE EUT TO BE TECHNICALLY COMPLIANT WITH THE EN STANDARD.

Test Dated	:	JUN,07,2005		
Test Enginee	er:	Faren		
Approve &	Aut	horized Signer: Jeff	Huan g	

HIN 07 2005

MODEL: MRM-6550P REPORT NO: 05060701

2. General Information

2.1 Production Description

Description : Switching power supply

Model Number : MRM-6550P

Applicant : ZIPPY TECHNOLOGY CORP.

Address : 10F,No.50,MIN CHYUAN RD. SHIN-TIEN, TAIPEI HSIEN

TAIWAN, R.O.C

FCC ID : N/A

Data Cable : N/A

PowerCord : Non-Shielded, detachable, 1.5m

REPORT NO: 05060701

2.2 Tested System Details

The FCC IDs for all equipment, plus descriptions of all cables used in the tested system (including inserted cards, which have grants) are:

2.2.1 Resistor Load

Model Number : ELECTRONIC LOAD

Serial Number : N/A
FCC ID : N/A
Manufacturer : ZIPPY

Power : 550W

2.3 Test Methodology

EMI Test:

Both conducted and radiated testing were performed according to the procedures in EN 55022 Radiated testing was performed at an antenna to EUT distance of 10 meters.

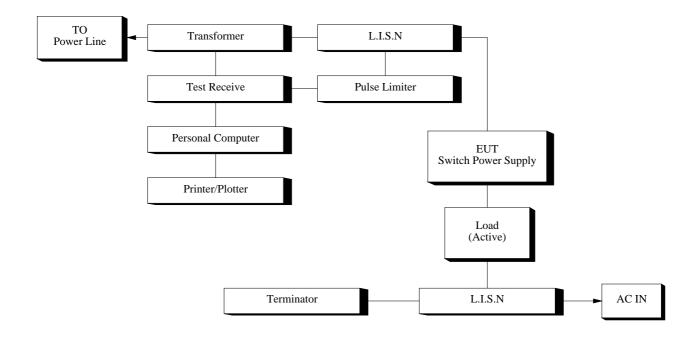
EMS Test:

Performed according to procedures in EN 61000 series regulations.

2.4 Test Facility

ZIPPY TECHNOLOGY CORP. 10F,No.50,MIN CHYUAN RD. SHIN-TIEN, TAIPEI HSIEN TAIWAN, R.O.C

3. Electronic-Magnetic Interference Test


3.1 Conducted Power Line Test

3.1.1 TEST Equipment's

The following test equipment's are used during the conducted power line tests:

Item	Instrument	Manufacture	Type No:	Last Calibration
1	TEST RECEIVER	ROHDE & SCHWARZ	ESHS30	NOV.2004
2	LISN	ROHDE & SCHWARZ	ENV4200	NOV.2004
3	COMPUTER	Acer	Power8000	N/A
4	PRINTER	EPSON	5700L	N/A
7	SHIELD	N/A		

3.1.2 Block Diagram of Test Setup

3.1.3 Conducted Powerline Emission Limit

Maximum RF Line Voltage dB(uV)							
Frequency	Class B						
MHz	QUASI-PEAK	AVERAGE					
0.15 - 0.50	66-56	56-46					
0.50 - 5.0	56	46					
5.0 - 30	60	50					

Remarks: In the Above Table, the tighter limit applies at the band edges.

3.1.4 EUT Configuration on Measurement

The equipment's which is listed 3.2 are installed on Conducted Power Line Test to meet the Commission requirement and operating in a manner which tends to maximize its emission characteristics in a normal application.

3.1.5 EUT Exercise Software

The EUT exercise program used during conducted testing was designed to exercise the EUT in a manner similar to a typical use. The exercise sequence is listed as below:

- 3.1.5.1 Setup the EUT and simulators as shown on 3.2.
- 3.1.5.2 Turn on the power of all equipment's.

3.1.6 Conducted Emission Data

The measurement range of conducted emission which is from 0.15 MHz to 30 MHz was investigated. The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range for all the test modes. Then the worst modes were reported the following data pages.

CONDUCTED EMISSION DATA

DATE OF TEST: JUN,07, 2005 TEMPERATURE : 26

EUT : SWITCH POWER SUPPLY HUMIDITY : 65%

TEST MODE : MRM-6550P DISPLAY PATTERN: N/A

Frequency	Reading Le	vel dBuV	Limites
MHz	Line 1	Line 2	DBuV
0.21	33.55	30.	63.21
0.35	34.62	28.05	58.96

Remark:1.All readings are Quasi-Peak values.

conduction test

EUT:

MRM-6550P @1U

Manuf:

ZIPPY TECH CO. LTD

Op Cond:

FULL LOAD

Operator:

Test Spec:

EN55022 -- Class B

Comment:

Load Condition(30 20 0.8 1 20 2.5)

L220V

Scan Settings	(4 F	Ranges)							
	Freq	uencies —		-		- Receiver Se	ettings —		
Start	Stop		Step	i IF BW	Detector	M-Time	Atten	Preamp	OpRge
150kHz	500k	Hz	5kHz	10kHz	QP+AV	1msec	Àuto	OFF	60dB
500kHz	1000	kHz	5kHz	10kHz	QP+AV	1msec	Auto	OFF	60dB
1000kHz	10M	Hz	20kHz	10kHz	QP+AV	1msec	Auto	OFF	60dB
10MHz	30MI	Hz	20kHz	10kHz	QP+AV	1msec	Auto	OFF	60dB
Transducer	No.	Start	Stop		Name				

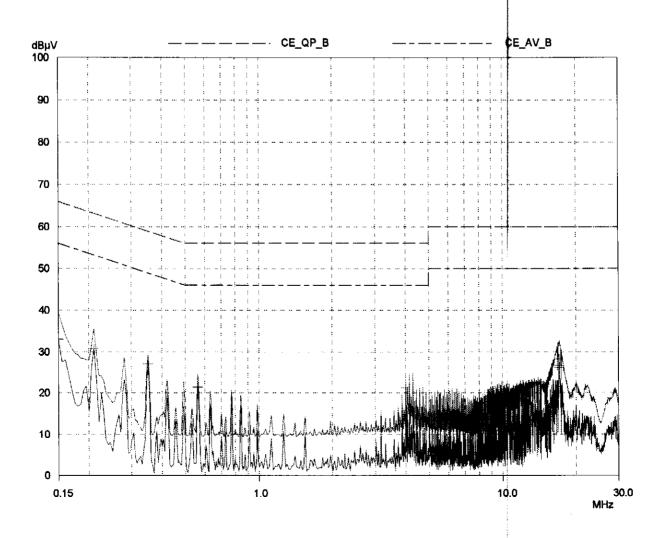
150kHz

Stop 30MHz

Cf

Name CEB

Prescan Measurement:


Detectors:

X QP / + AV

Meas Time:

see scan settings

Peaks: Acc Margin: 8 25 dB

07 Jun 2005 08:33

OpRge 60dB 60dB 60dB 60dB

conduction test

EUT:

MRM-6550P @1U

Manuf: Op Cond: ZIPPY TECH CO..LTD **FULL LOAD**

Operator:

Test Spec:

EN55022 - Class B

Comment:

Load Condition(30 20 0.8 1 20 2.5)

L220V

Scan Settings	(4 Ra	anges)	•			٠		
	Freque	encies —				- Receiver S	ettings —	
Start	Stop		Step	IF BW	Detector	M-Time	Atten	Preamp
150kHz	500kH		5kHz	10kHz	QP+AV	1msec	Auto	OFF
500kHz	1000k		5kHz	10kHz	QP+AV	1msec	Áuto	OFF
1000kHz	10MH:		20kHz	10kHz	QP+AV	1msec	Auto	OFF
10MHz	30MH;	Z	20kHz	10kHz	QP+AV	1msec	Auto	OFF
Transducer	No.	Start	Stop		Name		i	
	1	150kHz	. 30	MHz	CEB			
Prescan Measu	irement:	Detectors:	X QP	/ + AV				
		Meas Time:	see s	can settings				
		Peaks:	8	•				
		Acc Margin:	25 dB	i				
Peak Search R	esults							
Frequency	QP Level	QP Limi	it QI	P Delta	Phase	PE		
MHz	dBµV	dΒμV	dE	1	•	•		
No results							e de la companya de l	
Frequency	AV Level	AV Limit	t A\	/ Delta	Phase	PE		
MHz	dBµV	dΒμV	dB	i	-	-		
D.15	33.07	56.00	22	.93	N	gnd		
0.21	30.85	53.21	22	.36	N	gnd	-	
0.35	27.13	48.96	21	.83	N	gnd	ļ	
0.56	21.38	46.00	24	.62	N	gnd	ŧ	
4.0	21.20	46.00	24	.80	N	gnd		
7.0	28.28	50.00		.72	N	gnd		
7.04	00.00			_	• •	9· /u		

23.20

23.72

Ν

17.04

17.14

26.80

26.28

50.00

50.00

gnd

gnd

^{*} limit exceeded

ZIPPY EMC LAB

07 Jun 2005 08:54

conduction test

EUT:

MRM-6550P @1U

Manuf:

ZIPPY TECH CO..LTD

Op Cond:

FULL LOAD

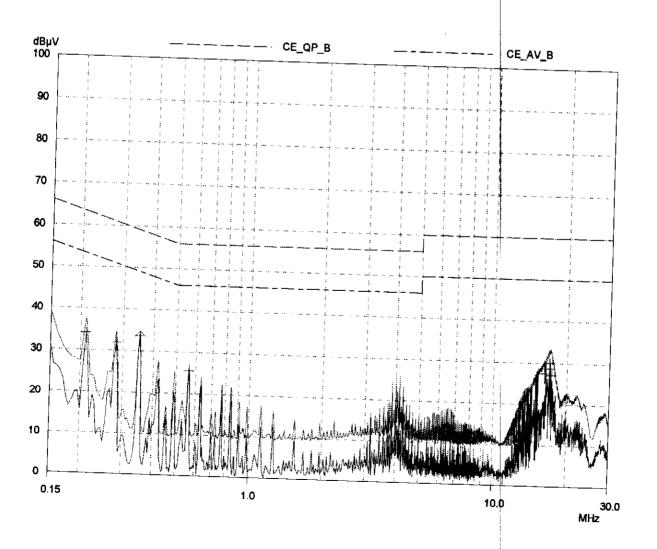
Operator Test Spec:

EN 55022 - Class B

Comment:

Load Condition(30 20 0.8 1 20 2.5)

N220V


Scan Settings		4 Ranges) equencies							
Start 150kHz 500kHz 1000kHz 10MHz	St 50 10 10		Step IF BW 5kHz 10kHz 5kHz 10kHz 20kHz 10kHz 20kHz 10kHz	10kHz 10kHz	Detector QP+AV QP+AV QP+AV QP+AV	M-Time 1msec 1msec 1msec 1msec 1msec	1msec Auto OFF 1msec Auto OFF 1msec Auto OFF	OpRge 60dB 60dB 60dB	
Transducer	No.	Start	Stop		Name				60dB
	1	150kHz	3	0MHz	CEB				
Prescan Measur	ement:	Detectors:	X QF	P/+ AV		İ			

Meas Time:

see scan settings

Peaks:

Acc Margin: 25 dB

ZIPPY EMC LAB

conduction test

EUT:

MRM-6550P @1U

Manuf:

ZIPPY TECH CO..LTD

Op Cond:

FULL LOAD

Operator: Test Spec:

EN 55022 -- Class B

Comment:

Load Condition(30 20 0.8 1 20 2.5)

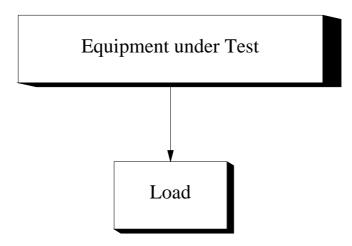
N220V

Stop 500kH; 1000k/ 10MHz	z tz	Step 5kHz 5kHz 20kHz 20kHz	IF BW 10kHz 10kHz 10kHz 10kHz	Detector QP+AV QP+AV QP+AV QP+AV	M-Time 1msec 1msec 1msec 1msec 1msec	ettings — Atten Auto Auto Auto Auto	Preamp OFF OFF OFF	OpRg 60dB 60dB 60dB 60dB
No. 1	Start 150kHz	Stop 30A	ИНz	Name CEB				OOOD
rement:	Detectors: Meas Time: Peaks: Acc Margin:							
sults								
QP Level dBµV	QP Limit dBµV	QP (dB	Delta	Phase	PE -			
34.62	58.96	24.34	4	N	gnd			
AV Level dΒμV	AV Limit dBµV	AV D	elta	Phase	PE -	of the spiritual		
34.09 31.86 33.55 25.60 27.58 30.12	53.21 50.82 48.96 46.00 50.00	18.96 15.41		N N N N	gnd gnd gnd gnd gnd	The same of the sa		
	Freque Stop 500kH. 1000kf 10MHz 30MHz 30MHz No. 1 strement: PSults QP Level dBµV 34.62 AV Level dBµV 34.62 AV Level dBµV 34.09 31.86 33.55 25.60 27.58	Frequencies Stop 500kHz 1000kHz 1000kHz 10MHz 30MHz No. Start 1 150kHz Irement: Detectors: Meas Time: Peaks: Acc Margin: Peaks: Acc Margin: Peaks: Acc Margin: Peaks: Acc Margin: Peaks: Acc Margin: Ac	Frequencies Stop Step Stop Step Stop Step Stop Step Stop Step Stop Step Step	Frequencies	Frequencies Step IF BW Detector	Frequencies Stop Step IF BW Detector M-Time Stop Step Step Stop Step	Frequencies	Frequencies

07 Jun 2005 08:54

^{*} limit exceeded

3.2 Radiation Emission Test

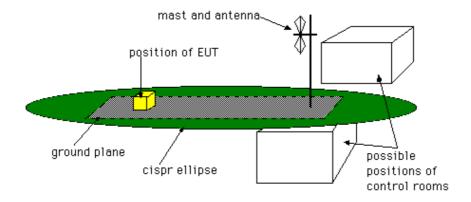

3.2.1 Test Equipment

The following test equipment's are used during the radiated emission test:

Instrument	Manufacture	Type No:	Last Calibration
Spectrum Analyzer	<u>H.P</u>	<u>8594A</u>	May,2004
Test Receiver	IFR System	<u>A-7550</u>	Jun,2004
Preamplifier	<u>H.P</u>	<u>8447D</u>	May,2004
Biconical Ant.	t. <u>Emco</u> <u>3110</u>		Jun,2004
Log-Periodic Ant.	<u>Emco</u>	<u>3146</u>	Jun,2004
Dipole Antenna	<u>Emco</u>	<u>3121C</u>	Nov,2004

3.2.2 Test Setup

3.2.2.1 Block Diagram of Connection between EUT and simulators


EUT: SWITCHING POWER SUPPLY

3.2.2.2 Open Field Test Site - description

The open field test site (OFTS) is designed to provide an environment in which repeatable tests of radiated emissions can be carried out.

It consists of a flat elliptical area as shown in the diagram below.

The equipment under test and the antenna are placed at the foci of the ellipse.

The antenna height should be remotely adjustable from 1m to 4m. Measuring instrumentation should be outside the ellipse at the position shown or in a room under the ground plane.

The whole or part of the site may be enclosed in an RF transparent building.

For precompliance testing a 3m test site with a fixed height antenna (at 1.5-2m height) and no metallic ground plane may be used. This may be a clear area on a car park or a grass area but should be away from large metallic structures.

3.2.3 Radiated Emission Limit

Class B Limits

Frequency	Distance	Field Strength
MHz	Meter	DB(uV/M)
30-230	10	30
230-1000	10	37

Remarks:

- 1. The tighter limit shall apply at the edge between two frequency bands.
- 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

3.2.4 EUT Configuration

The equipment's which is listed 4.2.1 are installed on Radiated Emission Test to meet the Commission requirement and operating in a manner which tends to maximize its emission characteristics in a normal application.

3.2.5 Operation Condition of EUT

Same as Conducted Power Line Test.

3.2.6 Radiated Emission Data

The measurement range of radiated emission which is from 30 MHz to 1000 MHz was investigated. The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range for all the test modes. Then the worst modes were reported the following data pages.

MODEL: MRM-6550P	REPORT NO: 05060701
1102221111111 00001	1121 0111 1 0 0 0 0 0 0 7 0 1

RADIATED EMISSION DATA

DATE OF TEST :	TEMPERATURE :
EUT :	HUMIDITY :
ΓEST MODE :	DISPLAY PATTERN:

Frequency	Cable	Antenna	Reading Level	Emission Level	Limits
	Loss	Factor	Horizontal	Horizontal	
(MHz)	(dB)	(dB)	dBuV/m	dBuV/m	dBuV/m

Remark: 1. All readings are Quasi-Peak values.

MODEL: MRM-6550P	REPORT NO: 05060701
WODEL: WIKW 03301	KEI OKI 110. 03000701

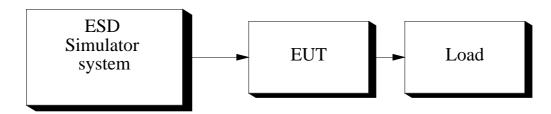
RADIATED EMISSION DATA

DATE OF TEST :	TEMPERATURE :
EUT :	HUMIDITY :
ΓEST MODE :	DISPLAY PATTERN:

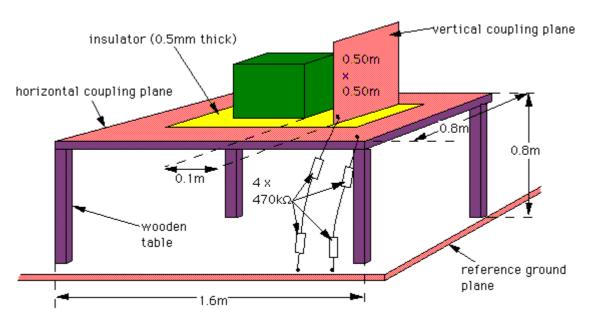
Frequency	Cable	Antenna	Reading Level	Emission Level	Limits
	Loss	Factor	Vertical	Vertical	
(MHz)	(dB)	(dB)	dBuV/m	dBuV/m	dBuV/m

Remark: 1. All readings are Quasi-Peak values.

4.ESD Measurement


4.1 Test Equipment

The following test equipment's are used during the ESD test:


Instrument	Manufacture	Type No:	Last Calibration
ESD Simulator system	Keytek	MZ-15/EC	MAY,2005
Electronic Load	D-RAM	Load-2000	N/A

4.2 Test Setup

4.2.1 Block Diagram of Connections between EUT and simulators

4.2.2 Test Setup of EUT

4.3 Severity Levels

	TEST VOLTAGE	TEST VOLTAGE
LEVEL	CONTACT	AIR
	DISCHARGE	DISCHARGE
1	2KV	2KV
2	4KV	4KV
3	6KV	6KV
4	8KV	8KV
X	SPECIAL	SPECIAL

4.4 EUT Operating Condition

- 1. Setup the EUT and Test Equipment as shown on 4.2
- 2. power on.

4.5 Test Procedure

Air Discharge:

This test was done above a non-conductive surfaces. The round discharge electrode about 30cm away will approach as fast as possible to touch test points of the EUT. Discharge happens before the contact. This procedure is repeated ten times on one selected location.

4.6 Test Method

According to IEC 61000-4-2

4.7 Test Result

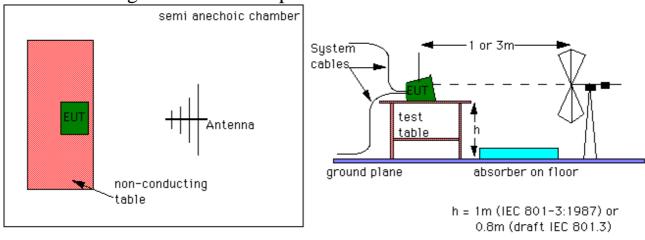
DATE OF TEST: JUN,07,2005 TEMPERATURE : 26

EUT : SWITCH POWER SUPPLY HUMIDITY : 65%

TEST MODE : MRM-6550P DISPLAY PATTERN: N/A

Item	Amount of discharge	Voltage	Results
Air discharge	500	+2KV	Pass
		-2KV	Pass
Air discharge	500	+4KV	Pass
		-4KV	Pass
Air discharge	500	+6KV	Pass
		-6KV	Pass
Air discharge	500	+8KV	Pass
		-8KV	Pass
Air discharge			
Air discharge			

Input Voltage: AC 230V/50Hz


5. Radiated Susceptibility Measurement

5.1 Test Equipment

The following test equipment's are used during the RS test:

Instrument	Manufacture	Type No:	Last Calibration
Signal generator	H.P	8657A	Dec.,20,2004
Power amplifier	A&R	100A100	Dec.,20,2004
Field strength meter	A&R	FM2000	Oct.,02,2004
Field strength sensor	A&R	EP2000	Oct.,02,2004
Power antenna	A&R	AT1080	Oct.,02,2004

5.2 Block Diagram of Test Setup

Antennas-layout

For the upper frequency range of 200 to 1000 MHz, antennas are the normal method of producing the required field strength. This is also carried out in an anechoic chamber or a screened room. If a screened room is used it must be damped. The anechoic chamber should be used for compliance testing, the screened room may be used for precompliance testing. The fields in the screened room will not be as uniform as those obtainable in an anechoic chamber and will also not be as repeatable. The EUT is placed on a non-conductive table, 0.8 m above the reference ground plane, which in many cases will be the floor of a screened room. According to the standards, the EUT should be oriented so that its most sensitive side is facing the antenna. In practice it can be difficult to decide beforehand which is the most sensitive side, and in most cases, a series of tests will be required with the EUT in several orientations.

5.3Severity Levels

LEVEL	FIELD STRENGTH V/M		
1	1		
2	3		
3	10		
Х	SPECIAL		

5.4 EUT Operating Condition

Same as section 4.4.

5.5 Test Procedure

The EUT and load are placed on a table which is 0.8 meter above ground. The field sensor is also placed on the same table to monitor field strength from transmitting antenna.

EUT is set 1 meter away from the transmitting antenna which is mounted on an antenna each time.

The antenna is fixed 1 meter above ground. Both horizontal and vertical polarization of the antenna are set on measurement.

In order to judge the EUT performance, a CCD camera is used to monitor EUT screen.

All the scanning conditions are as follows:

Condition of Test

1. Field Strength
2. Radiated Signal
3. Scanning Frequency
4. Sweep Time of Radiated

Remarks
3 V/M Level 2
80% Amplitude Modulated with a 1KHz Tone
80 MHz-1 GHz
0.0015 Decade/s

5.6 Test Method

According to IEC 61000-4-3

5.7 Test Result

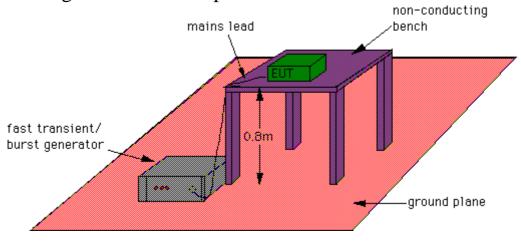
DATE OF TEST: JUN,07,2005 TEMPERATURE : 26

EUT : SWITCH POWER SUPPLY HUMIDITY : 65%

TEST MODE : MRM-6550P DISPLAY PATTERN: N/A

Frequency Range (MHz)	Position (Angle)	Polarity (HorV)	Field Strength (V/M)	Results
80-1000	0° (Front)	Н	3	Pass
80-1000	90° (Right)	Н	3	Pass
80-1000	180 ° (Back)	Н	3	Pass
80-1000	270° (Left)	Н	3	Pass
80-1000	0° (Front)	V	3	Pass
80-1000	90 ° (Right)	V	3	Pass
80-1000	180 ° (Back)	V	3	Pass
80-1000	270° (Left)	V	3	Pass

Test Result : Criteria A


6. Electrical Fast Transient / Burst Measurement

6.1 Test Equipment

The following test equipment's are used during the EFT tests:

Instrument	Manufacturer	Type No.	Last Calibration
Fast Transient/Burst Generator	Keytek	EMCpro	MAY,2005

6.2 Block Diagram of Test Setup

6.3 Severity Levels

О	Open Circuit Output Test Voltage +/- 10%				
Level	On power supply lines				
1	0.5kv				
2	1KV				
3	2KV				
4	4KV				
X	SPECIAL				

6.4 EUT Operation Condition

Same as section 4.4.

6.5 Test Procedure

The EUT and its load are placed on a table which is 0.8 meter above a metal ground plane measured 1m*1m min. And 0.65 mm thick min. And projected beyond the EUT by at least 0.1m on all sides.

The EUT is away from the walls of the test AC power line test is as follows:

For Ac power line test:

The EUT is connected to the power mains through a coupling device that directly couples the EFT interference signal.

Each of the Line and Neutral conductor is impressed with burst noise for 1 min.

6.6 Test Method

According to IEC 61000-4-4.

6.7 Test Result

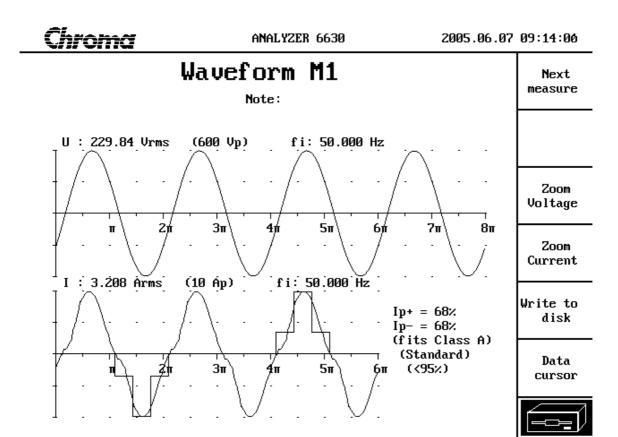
DATE OF TEST: JUN,07,2005 TEMPERATURE : 26

EUT : SWITCH POWER SUPPLY HUMIDITY : 65%

TEST MODE : MRM--6550P DISPLAY PATTERN: N/A

Inject Line	Voltage KV	Inject time	Inject Method	Result
		(sec)		
L1-PE	+1	60	DIRECT	PASS
L1-PE	-1	60	DIRECT	PASS
L2-PE	+1	60	DIRECT	PASS
L2-PE	-1	60	DIRECT	PASS
L1-L2	+1	60	DIRECT	PASS
L1-L2	-1	60	DIRECT	PASS
L1,L2-PE	+1	60	DIRECT	PASS
L1,L2-PE	-1	60	DIRECT	PASS

Input Voltage: 230 VAC/50Hz


7. HARMONIC CURRENT TEST

DATE OF TEST: JUN,07,2005 TEMPERATURE : 26

EUT : SWITCH POWER SUPPLY HUMIDITY : 65%

TEST MODE : MRM-6550P DISPLAY PATTERN: N/A

Item	Readin	g LeveA	Item	Reading	LeveA
	A	Limites		A	Limites
1	3.172				
3	0.459	2.300			
5	0.123	1.140			
7	0.047	0.721			
9	0.010	0.360			
11	0.009	0.252			
13	0.027	0.210			
15	0.022	0.150			
17	0.016	0.132			
19	0.028	0.118			
21	0.010	0.107			
23	0.007	0.098			
25	0.016	0.090			
27	0.021	0.083			
29	0.008	0.078			
31	0.014	0.073			
33	0.017	0.068			
35	0.008	0.064			
37	0.003	0.061			
39	0.013	0.058			_

Chroma

ANALYZER 6630

2005.06.07 09:15:16

(1611_00)

<u>\n</u>	rome			нин	LYZEK 663	ย		2005.06.07	09:15:16
Setup:	CLASS_D	Gen	setti	ng: 1(1		229.8	6 V fu:	: 50.000 Hz	Next measure
Live Module:	M1	Limi Note	t: Cl	ass D (: 4 I : Standard) =0.978)			0.721 kW : 3.172 A	Change to bar graph
No	Á	Lim A	No	Á	Lim A	No	A	Lim A	Relative current
1	3.172		15	0.022	0.150	29	0.008	0.078	
2	0.001		16	0.001		30	0.000		
3	0.459	2.300	17	0.016	0.132	31	0.014	0.073	
4	0.000		18	0.000		32	0.000		
5	0.123	1.140	19	0.028	0.118	33	0.017	0.068	
6	0.000		20	0.001		34	0.000		Write to
7	0.047	0.721	21	0.010	0.107	35	0.008	0.064	disk
8	0.000		22	0.000		36	0.001		uisk
9	0.010	0.360	23	0.007	0.098	37	0.003	0.061	
10	0.000		24	0.000		38	0.001		
11	0.009	0.252	25	0.016	0.090	39	0.013	0.058	
12	0.000		26	0.000		40	0.000		
13	0.027	0.210	27	0.021	0.083				
14 Current	0.001 range:	10 Ap	28	0.000					

Appl: EUROPE

Appl: EUROPE

(1212 01)

`hroma ANALYZER 6630 2005.06.07 09:14:42 Current Harmonics Next measure Gen setting: 1(1) U: 229.86 V fu: 50.000 Hz Setup: CLASS_D Analysed periods: 4 I: 3.208 A Live P: 0.721 kW Module: M1 Limit: Class D (Standard) I1: 3.172 A Change to Note: table THD=15.20 % (PF=0.978) PASSED Relative current 2.00-Log scale 1.50 Write to 1.00 disk 0.50 Ø. 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Harmonic order Appl: EUROPE (1212_00)

MODEL: MRM-6550P	REPORT NO: 05060701

8. VOLTAGE FLUCTUATION AND FLICKER TEST DATA

DATE OF TEST: JUN,07,2005 _____ TEMPERATURE : 26

EUT : SWITCH POWER SUPPLY HUMIDITY : 65%

TEST MODE : MRM-6550P DISPLAY PATTERN: N/A

		ı
Reading	Limit	Result
0.000	1.0	Pass
0.000	0.65	Pass
0.000	3.00	Pass
0.000	4.00	Pass
0.000	0.20	Pass
	0.000 0.000 0.000	0.000 1.0 0.000 0.65 0.000 3.00 0.000 4.00

9. SURGE IMMUNITY TEST

DATE OF TEST: JUN,07,2005 TEMPERATURE : 26

EUT : SWITCH POWER SUPPLY HUMIDITY : 65%

TEST MODE : MRM-655<u>0P</u> DISPLAY PATTERN: <u>N/A</u>

-			T			T
Waveform	Voltage	Output:LC	Phs Ref	Phs Ang	Tests	Delay
12 Ohm	-2000V	MAINS:L1/PE	L1	0 deg.	5	60 sec
12 Ohm	-2000V	MAINS:L1/PE	L1	90 deg.	5	60 sec
12 Ohm	-2000V	MAINS:L1/PE	L1	270 deg.	5	60 sec
12 Ohm	2000V	MAINS:L1/PE	L1	0 deg.	5	60 sec
12 Ohm	2000V	MAINS:L1/PE	L1	90 deg.	5	60 sec
12 Ohm	2000V	MAINS:L1/PE	L1	270 deg.	5	60 sec
12 Ohm	-2000V	MAINS:L2/PE	L1	0 deg.	5	60 sec
12 Ohm	-2000V	MAINS:L2/PE	L1	90 deg.	5	60 sec
12 Ohm	-2000V	MAINS:L2/PE	L1	270 deg.	5	60 sec
12 Ohm	2000V	MAINS:L2/PE	L1	0 deg.	5	60 sec
12 Ohm	2000V	MAINS:L2/PE	L1	90 deg.	5	60 sec
12 Ohm	2000V	MAINS:L2/PE	L1	270 deg.	5	60 sec
2 Ohm	-1000V	MAINS:L1/L2	L1	0 deg.	5	60 sec
2 Ohm	-1000V	MAINS:L1/L2	L1	90 deg.	5	60 sec
2 Ohm	-1000V	MAINS:L1/L2	L1	270 deg.	5	60 sec
2 Ohm	1000V	MAINS:L1/L2	L1	0 deg.	5	60 sec
2 Ohm	1000V	MAINS:L1/L2	L1	90 deg.	5	60 sec
2 Ohm	1000V	MAINS:L1/L2	L1	270 deg.	5	60 sec

Test Result : Pass

MODEL: MRM-6550P REPORT NO: 05060701

10. CONDUCTED IMMUNITY

DATE OF TEST: JUN,07,2005 TEMPERATURE : 26

EUT : SWITCH POWER SUPPLY HUMIDITY : 65%

TEST MODE : MRM-6600P DISPLAY PATTERN: N/A

Frequency Range (MHz)	Polarity (HorV)	Field Strength (V/M)	Results
0.15-80	Н	3	Pass

INJECTION TYPE:

DIRECT CDN Type M3

TEST CONDITION:

Step: 1% Dwell Time: 3sec

Test result: Criteria A

11. VOLTAGE DIP, INTERRUPTIONS IMMUNITY

DATE OF TEST: JUN,07,2005 TEMPERATURE : 26

EUT : SWITCH POWER SUPPLY HUMIDITY : 65%

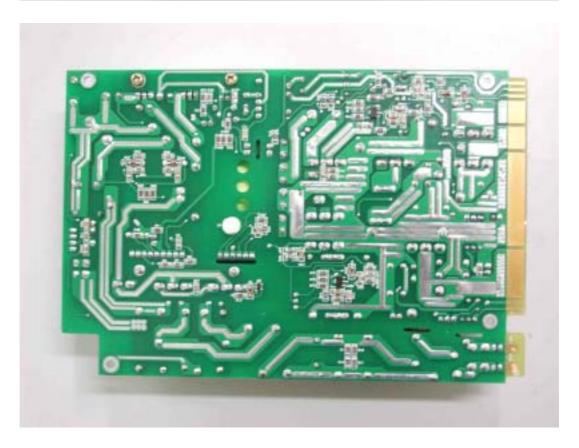
TEST MODE : MRM-6550P DISPLAY PATTERN: N/A

7D + T 1	T)1 A	D 17.1	D (TD - 1	D 1
Test Level	Phs Ang	Dur. Value	Duration	Tests	Delay
0% Short	0 deg.	0.5	cycle	3	10 sec
0% Short	90 deg.	0.5	cycle	3	10 sec
0% Short	180 deg.	0.5	cycle	3	10 sec
0% Short	270 deg.	0.5	cycle	3	10 sec
0% Open	0 deg.	0.5	cycle	3	10 sec
0% Open	90 deg.	0.5	cycle	3	10 sec
0% Open	180 deg.	0.5	cycle	3	10 sec
0% Open	270 deg.	0.5	cycle	3	10 sec
70% Dip	0 deg.	25.00	cycle	3	10 sec
70% Dip	90 deg.	25.00	cycle	3	10 sec
70% Dip	180 deg.	25.00	cycle	3	10 sec
70% Dip	270 deg.	25.00	cycle	3	10 sec
0% Open	0 deg.	250.00	cycle	3	10 sec
0% Open	90 deg.	250.00	cycle	3	10 sec
0% Open	180 deg.	250.00	cycle	3	10 sec
0% Open	270 deg.	250.00	cycle	3	10 sec

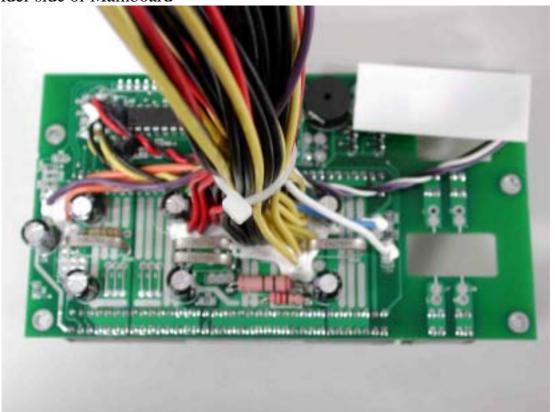
Test Result : Pass

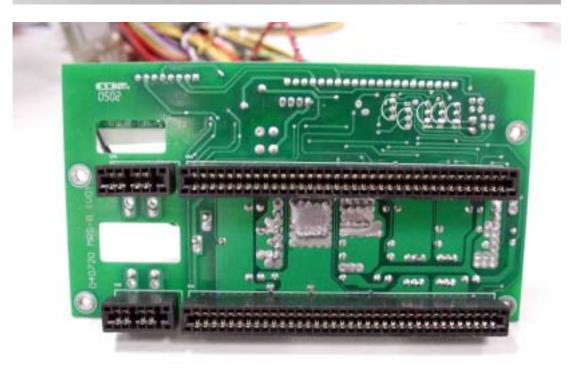
12. Photographs
1. Front view of Power Supply

2.Back view of Power Supply

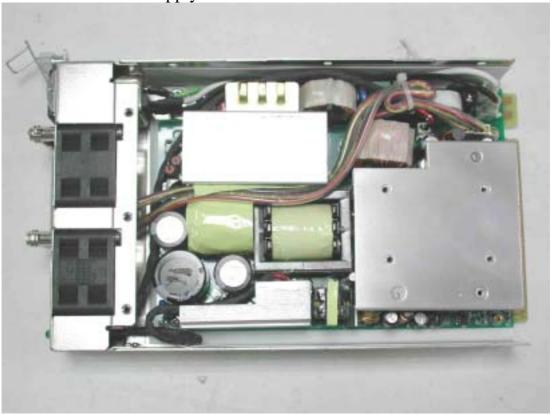

- 1. Front view of Power Supply
- 2 .Back view of Power Supply

- 3.Component side of Mainboard
- 4.Solder side of Mainboard





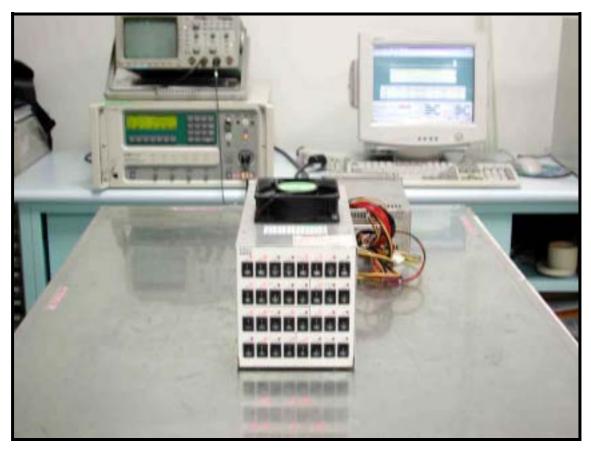
MODEL: MRM-6550P


REPORT NO: 05060701

- 3.Component side of Mainboard
- 4. Solder side of Mainboard

5.Inside view of Power Supply 6.Inside view of Power Supply


5.Inside view of Power Supply 6.Inside view of Power Supply



MODEL: MRM-6550P

REPORT NO: 05060701

7.Test view 8.Test view

13. EMI Reduction Method During Compliance Testing

1.No modification was made during testing.