

Redfish
Reference Guide

Revision 1.0

Supermicro Redfish Reference Guide 2

The information in this USER’S MANUAL has been carefully reviewed and is believed to be accurate. The
vendor assumes no responsibility for any inaccuracies that may be contained in this document, makes
no commitment to update or to keep current the information in this manual, or to notify any person
organization of the updates. Please Note: For the most up-to-date version of this manual, please see our
web site at www.supermicro.com.

Super Micro Computer, Inc. (“Supermicro”) reserves the right to make changes to the product described
in this manual at any time and without notice. This product, including software, if any, and
documentation may not, in whole or in part, be copied, photocopied, reproduced, translated or reduced
to any medium or machine without prior written consent.

IN NO EVENT WILL SUPERMICRO BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, SPECULATIVE
OR CONSEQUENTIAL DAMAGES ARISING FROM THE USE OR INABILITY TO USETHIS PRODUCT OR
DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCHDAMAGES. IN PARTICULAR,
SUPERMICRO SHALL NOT HAVE LIABILITY FOR ANY HARDWARE,SOFTWARE, OR DATA STORED OR USED
WITH THE PRODUCT, INCLUDING THE COSTS OFREPAIRING, REPLACING, INTEGRATING, INSTALLING OR
RECOVERING SUCH HARDWARE,SOFTWARE, OR DATA.

Any disputes arising between manufacturer and customer shall be governed by the laws of Santa Clara
County in the State of California, USA. The State of California, County of Santa Clara shall be the
exclusive venue for the resolution of any such disputes. Super Micro's total liability for all claims will not
exceed the price paid for the hardware product.

Information in this document is subject to change without notice. Other products and companies
referred to herein are trademarks or registered trademarks of their respective companies or mark
holders.

Copyright © 2015 by Super Micro Computer, Inc.

All rights reserved.

Printed in the United States of America

Manual Revision 1.0

Release Date: August 14, 2015

Unless you request and receive written permission from Super Micro Computer, Inc., you may not copy
any part of this document.

Supermicro Redfish Reference Guide 3

1 Introduction

The Redfish Scalable Platforms Management API ("Redfish") is a new interface that uses RESTful
interface semantics to access data defined in a model format to perform out-of-band systems
management. It is suitable for a wide range of servers, from stand-alones to rack mount and blade
environments, but scales equally well for large scale cloud environments.

Redfish is a management standard which uses data model representation inside of a hypermedia
RESTful interface. it is based on REST, that’s how Redfish is easier to use and implement than many
other solutions. Since it’s model oriented, it is capable of expressing the relationships between
components in modern systems as well as the semantics of the services and components within them. It
is also easily extensible. By using a hypermedia approach to REST, Redfish can express a large variety of
systems from multiple vendors. Utilizing JSON (JavaScript Object Notation) data format which is in plain
text, allows many types of parameters to be available such that it enables scalability, human readability,
and flexibility for most programming environments by easily interpreting payload.

The model is exposed in terms of an interoperable OData Schema with the payload of the messages
being expressed in JSON following OData JSON conventions. The schema (available in both XML and
JSON formats) includes annotations to facilitate the automatic translation of the schema to JSON
Schema. The ability to externally host the schema definition of the resources in a machine-readable
format allows the meta data to be associated with the data without encumbering Redfish services with
the meta data, thus enabling more advanced client scenarios as found in many data center and cloud
environments.

This document will provide you with an overview of Restful API services and describe how to receive
Redfish API responses directly from a Supermicro BMC (Baseboard Management Controller).

2 HTTP Request Methods

The following HTTP methods are used to implement different actions, as described below.

• Read Requests (GET):
The GET method is used to request a representation of a specified resource. The representation can
be either a single resource or a collection.
• Update (PATCH):
The PATCH method is used to apply partial modifications to a resource.
• Replace (PUT):

Supermicro Redfish Reference Guide 4

The PUT method is used to completely replace a resource. Any properties omitted from the body of
the request are reset to their default value.
• Create (POST):
The POST method is used to create a new resource. This request is submitted to the resource
collection in which the new resource is meant to belong.
• Actions (POST):
The POST method may also be used to initiate operations on the object (Actions). The POST
operation may not be idempotent.
• Delete (DELETE):
The DELETE method is used to remove a resource.

2.1 Reponses
Four types of responses are supported, as defined below.

• Metadata Responses:
These describe the resources and types exposed by the service to generic clients.
• Resource Responses:
 JSON representation of an individual resource.
• Resource Collection Responses:
 JSON representation of a collections of resources.
• Error Responses:
Top-level JSON response providing additional information in the case of an HTTP error.

2.2 HTTP Status Code Description
Status Code Description

200 OK
201 Created
202 Accepted
204 No Content
301 Moved permanently
302 Found
304 Not Modified
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
405 Method Not Allowed
406 Not Acceptable
409 Conflict
410 Gone
411 Length Required
412 Precondition Failed
415 Unsupported Media Type
500 Internal Server Error

Supermicro Redfish Reference Guide 5

501 Not Implemented
503 Service Unavailable

2.3 List of Available APIs
/redfish/v1/
 /redfish/v1/Chassis
/redfish/v1/Chassis/1
/redfish/v1/Chassis/1/Thermal
/redfish/v1/Chassis/1/Power
/redfish/v1/Managers
/redfish/v1/Managers/1
/redfish/v1/Managers/1/NetworkProtocol
/redfish/v1/Managers/1/EthernetInterfaces
/redfish/v1/Managers/1/EthernetInterfaces/1
/redfish/v1/Managers/1/SerialInterfaces
/redfish/v1/Managers/1/SerialInterfaces/1
/redfish/v1/Managers/1/LogServices/
/redfish/v1/Managers/1/LogServices/Log1/
/redfish/v1/Managers/1/LogServices/Log1/Entries
/redfish/v1/Managers/1/LogServices/Log1/Entries/[num]
/redfish/v1/Managers/1/LogServices/Log1/Actions/LogService.Reset – (POST)
/redfish/v1/Managers/1/Actions/Manager.Reset – (POST)
/redfish/v1/SessionService/
/redfish/v1/SessionService/Sessions/
/redfish/v1/SessionService/Sessions/[num]
/redfish/v1/Systems
/redfish/v1/Systems/1
/redfish/v1/Systems/1/Processors/[num]
/redfish/v1/Systems/1/SimpleStorage (Support NVME and LSI. LSI is restricted to LSI 3108 series)
/redfish/v1/Systems/1/EthernetInterfaces/[num] (MUST install TAS and run it)
/redfish/v1/Systems/1/Actions/ComputerSystem.Reset (POST)
/redfish/v1/AccountService
/redfish/v1/AccountService/Accounts/
/redfish/v1/AccountService/Accounts/[num]
/redfish/v1/AccountService/Roles
/redfish/v1/AccountService/Roles/Admin
/redfish/v1/AccountService/Roles/Operator
/redfish/v1/AccountService/Roles/ReadOnlyUser
/redfish/v1/EventService

chrome-extension://hgmloofddffdnphfgcellkdfbfbjeloo/redfish/v1/Systems/1/SimpleStorage
chrome-extension://hgmloofddffdnphfgcellkdfbfbjeloo/redfish/v1/EventService

Supermicro Redfish Reference Guide 6

/redfish/v1/EventService/Subscriptions
/redfish/v1/EventService/Actions/EventService.SendTestEvent (POST)

3 Using RESTful APIs

Begin by installing PostMan or Advanced REST client plug-ins in your browser (either Chrome or Firefox).

3.1 Authentication
Redfish supports both "Basic Authentication" and "Redfish Session Login Authentication" (as described
below under Session Management). Service does not require a client to create a session when Basic
Authentication is used.

3.1.1 Basic Authentication: HTTP BASIC authentication uses compliant TLS connections to transport the
data between any third party authentication service and clients.
Example: The following example uses Postman (a web API application) to display a chassis response
using Basic Authentication.

chrome-extension://hgmloofddffdnphfgcellkdfbfbjeloo/redfish/v1/EventService/Subscriptions
chrome-extension://hgmloofddffdnphfgcellkdfbfbjeloo/redfish/v1/EventService/Actions/EventService.SendTestEvent

Supermicro Redfish Reference Guide 7

Note: Always check the status code once you get the response from the Redfish URL. You can refer to
the status code table mentioned above. (All URLs/commands are case sensitive.)
3.1.2 Session Management:
Redfish Service uses session management to implement authentication. This includes orphaned session
timeouts and a number of simultaneous open sessions.
Step1. User can Post the following username/password information to the Post payload field, which will
create a new session.
{
"UserName": "<username>",
"Password": "<password>"
}
Example of applying for Authentication using a Chrome-based app (Advanced Rest Client):

1. Enter this URL into your browser: https://BMC ip/redfish/v1/SessionService/Sessions
2. Apply the POST method with username/password info inside the payload and send it.
3. The user will receive 201 messages created with X-AUTH token code.

• Users can create maximum of 16 sessions.
• Session Lifetime: For Redfish sessions, as long as a client sends requests for the session within the

session timeout period, the session will remain open and the session authentication token will
remain valid. If the sessions times-out, the session will be automatically terminated. The default
session timeout is 30 minutes. If a user is not active for 30 minutes, the token will be rendered
invalid.
Users can always modify the “SessionTimeout” by using IPMI web or a patching operation from
Redfish.
Example: [PATCH] https://IP/redfish/v1/SessionService

https://bmc/
https://ip/redfish/v1/SessionService

Supermicro Redfish Reference Guide 8

Payload: {"SessionTimeout": 20}->Send->Status Code: 200 OK
• Session Termination or Logout: A Redfish session is terminated when the client logs-out. This is

accomplished by performing a DELETE to the session resource identified by the link returned in the
location header either when the session was created or if the SessionId is returned in the response
data. The ability to DELETE a session by specifying the session resource ID allows an administrator
with sufficient privilege to terminate other users sessions from a different session.
Example: [DELETE] https://IP/redfish/v1/SessionService/Sessions/2(num)->Send->StatusCode:200
OK

Log in Log Out
Operation : POST Operation: DELETE
URI: redfish/v1/SessionService/Sessions/ URI: redfish/v1/SessionService/Sessions/(num)
Request headers:
Content-Type: application/json

Request headers:
Content-Type: application/json

Request body:
{"UserName":"UserName" , "Password":"Password"} Requestbody: NONE
Response: 201 created Response: 200 OK
X-Auth Token header displays Location and session ID
ex: Location: /redfish/v1/SessionService/Sessions/5

Step2. The response will include an X-Auth-token header with a session token and a location header.
Copy “X-Auth-Token: <Value>” and parse it to the HTTP header in order to GET API response.

• Parse X-Auth token value to get API response:

https://ip/redfish/v1/SessionService

Supermicro Redfish Reference Guide 9

3.2 Examples
Users can integrate current APIs into their software and applications in order to receive all services
provided by Redfish APIs.

3.2.1 Redfish API Response for Chassis/Thermal

{
@Redfish.Copyright: "Copyright © 2014-2015 Distributed Management Task
Force, Inc. (DMTF). All rights reserved."
@odata.context: "/redfish/v1/$metadata#Chassis/Members/1/Thermal/$entity"
@odata.type: "#Thermal.1.0.0.Thermal"
@odata.id: "/redfish/v1/Chassis/1/Thermal"
Id: "Thermal"
Name: "Thermal"
Temperatures: [30]
Fans: [4]
0:
{
@odata.id: "/redfish/v1/Chassis/1/Thermal#/Fans/0"
MemberID: "0"
Status:
{
State: "Enabled"
Health: "OK"
}
UpperThresholdNonCritical: 25300
UpperThresholdCritical: 25400
UpperThresholdFatal: 25500
LowerThresholdNonCritical: 700
LowerThresholdCritical: 500
LowerThresholdFatal: 300
PhysicalContext: "Backplane"
RelatedItem: [2]
0:
{@odata.id: "/redfish/v1/Systems/1"}
1:
{@odata.id: "/redfish/v1/Chassis/1"}
FanName: "FAN1"
ReadingRPM: 7500
MinReadingRange: 702
MaxReadingRange: 25298

chrome-extension://hgmloofddffdnphfgcellkdfbfbjeloo/redfish/v1/$metadata#Chassis/Members/1/Thermal/$entity
chrome-extension://hgmloofddffdnphfgcellkdfbfbjeloo/redfish/v1/Chassis/1/Thermal
chrome-extension://hgmloofddffdnphfgcellkdfbfbjeloo/redfish/v1/Chassis/1/Thermal#/Fans/0
chrome-extension://hgmloofddffdnphfgcellkdfbfbjeloo/redfish/v1/Systems/1
chrome-extension://hgmloofddffdnphfgcellkdfbfbjeloo/redfish/v1/Chassis/1

Supermicro Redfish Reference Guide 10

3.2.2 Redfish API Response for Systems/1/Processor/1

{
@Redfish.Copyright: "Copyright © 2014-2015 Distributed Management
Task Force, Inc. (DMTF). All rights reserved."
@odata.context: "/redfish/v1/$metadata#Systems/Members/1/Processors/
Members/$entity"
@odata.type: "#Processor.1.0.0.Processor"
@odata.id: "/redfish/v1/Systems/1/Processors/1"
Id: "1"
Name: "Processor"
Description: "Processor"
Socket: "CPU1"
Manufacturer: "Intel"
Model: "Intel(R) Xeon(R) processor"
MaxSpeedMHz: 4000
TotalCores: 12
TotalThreads: 24
ProcessorType: "CPU"
ProcessorArchitecture: "x86"
InstructionSet: "x86-64"
ProcessorId:
{
VendorId: "GenuineIntel"
IdentificationRegisters: "0xBFEBFBFF000306F2"
EffectiveFamily: "0x6"
EffectiveModel: "0x3F"
Step: "0x2"
}
-
Status:
{
State: "Enabled"
Health: "OK"

chrome-extension://hgmloofddffdnphfgcellkdfbfbjeloo/redfish/v1/$metadata#Systems/Members/1/Processors/Members/$entity
chrome-extension://hgmloofddffdnphfgcellkdfbfbjeloo/redfish/v1/$metadata#Systems/Members/1/Processors/Members/$entity
chrome-extension://hgmloofddffdnphfgcellkdfbfbjeloo/redfish/v1/Systems/1/Processors/1

Supermicro Redfish Reference Guide 11

3.2.3 Python Code for Redfish API Repsonse

3.3 Posting an Action Item

The following Action items can POST with their respective URLs, which are supported by Redfish at this
time.

• /redfish/v1/Managers/1/LogServices/Log1/Actions/LogService.Reset
• /redfish/v1/Managers/1/Actions/Manager.Reset
• /redfish/v1/Systems/1/Actions/ComputerSystem.Reset

Refer to the picture below. You should receive “status code 200”after posting any actions.

base_url = 'https://”IP”/redfish/v1/Managers/1/SerialInterfaces/1'

dict_host = requests.get(base_url).json()

print (json.dumps(dict_host, indent=2))
Output:
{
 "@odata.type": "#SerialInterface.1.0.0.SerialInterface",
 "Parity": "None",
 "Name": "SerialInterfaces",
 "DataBits": "8",
 "@odata.id": "/redfish/v1/Managers/1/SerialInterfaces/1",
 "@odata.context":
"/redfish/v1/Managers/1/SerialInterfaces/1/$metadata#Managers/Links/Members/1/Links/SerialInterfaces
/$entity",
 "FlowControl": "None",
 "SignalType": "Rs232",

 "StopBits": "8",

Supermicro Redfish Reference Guide 12

3.4 Fan Mode (OEM Feature)
This is a Supermicro OEM feature that is implemented under /redfish/v1/Chassis. Users can Patch
(modify) the Fan Mode using following values.
The fan modes are defined as enum property as below: (User can use any of following names)
<EnumType Name="FanMode">

<Member Name="Standard"/>
<Member Name="FullSpeed"/>
<Member Name="Optimal"/>
<Member Name="HeavyIO"/>

 <Member Name="PUE"/> </EnumType>

Step: Use the Patch operation and parse the following payload for your system.

{
"Oem": {
 "OemFan": {
 "FanMode": "PUE"
 }
 }
}

Supermicro Redfish Reference Guide 13

3.5 Event Service
The event service is a new alert mechanism for Redfish. This alert will be sent out through http to the
web server that is subscribed to by the users.

First, user needs to add a subscription to inform Redfish who will receive this event.

After user adds subscriptions, he can use the action “SendTestEvent” to send a testing event.

Alternatively, user can generate an event in the BMC and Redfish will automatically send an event alert
to the destination(s) in the subscriptions. For this reason, you need to implement the event listener,
which is like a web server that can receive https POST data that describes the Redfish event format.

For the current stage, user can launch Wireshark on the destination to sniff the packet to learn user
receive the Redfish event.

**
To add a subscription:
[Post]https://IP/redfish/v1/EventService/Subscriptions/
{"Destination":"http://www.dnsname.com/Destination1","Context":"user1_test","EventTypes":["Alert","StatusCha
nge"],"Protocol":"Redfish"}
- User can subscribe to a max. of 16 events.

To see all subscriptions:
[GET]https://IP/redfish/v1/EventService/Subscriptions/

To send a testing event:
[Post]https://IP/redfish/v1/EventService/Actions/EventService.SendTestEvent
{"EventType":["Alert"]}

User can delete events using the Delete service.
[DELETE]https://IP/redfish/v1/EventService/Subscriptions/1 (num)

https://ip/redfish/v1/EventService/Subscriptions/
http://www.dnsname.com/Destination1
https://ip/redfish/v1/EventService/Subscriptions/
https://ip/redfish/v1/EventService/Actions/EventService.SendTestEvent
https://ip/redfish/v1/EventService/Subscriptions/1

	1 Introduction
	2 HTTP Request Methods
	2.1 Reponses
	2.2 HTTP Status Code Description
	2.3 List of Available APIs

	3 Using RESTful APIs
	3.1 Authentication
	3.2 Examples
	3.2.1 Redfish API Response for Chassis/Thermal
	3.2.2 Redfish API Response for Systems/1/Processor/1
	3.2.3 Python Code for Redfish API Repsonse

	3.3 Posting an Action Item
	3.4 Fan Mode (OEM Feature)
	3.5 Event Service

